• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer
  • Home
  • Subscribe
  • Your Membership
    • Edit Your Profile
  • Services
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsored posts
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Shop
    • My Account
    • Cart
  • About
    • Contact
    • Privacy
    • Terms of use
  • Events

Robotics & Automation News

Market trends and business perspectives

  • News
  • Features
  • Video
  • Webinars
  • White papers
  • Press releases
  • Featured companies
    • AMD Xilinx
    • BlueBotics
    • Elite Robot
    • RGo Robotics
    • SICK Sensor Intelligence
    • Vicor Power

Nvidia and USC researchers demonstrate autonomous robotic cutting

August 20, 2021 by David Edwards Leave a Comment

Nvidia and USC researchers have demonstrated an innovative approach to Autonomous Robotic Cutting in new work nominated for a Best Paper Award at the Robotics Science & Systems Conference  last month. (See video and images below.)

Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset generation. Moreover, differentiable simulators can enable gradient-based optimization, which is invaluable for calibrating simulation parameters and optimizing controllers.

In their work nominated for a Best Paper Award at RSS 2021, Nvidia researchers present DiSECt: the first differentiable simulator for cutting soft materials. The simulator augments the finite element method (FEM) with a continuous contact model based on signed distance fields (SDF), as well as a continuous damage model that inserts springs on opposite sides of the cutting plane and allows them to weaken until zero stiffness, enabling crack formation.

Robotics researchers from Nvidia and University of Southern California presented their work at the 2021 Robotics: Science and Systems (RSS) conference called DiSECt, the first differentiable simulator for robotic cutting. The simulator accurately predicts the forces acting on a knife as it presses and slices through natural soft materials, such as fruits and vegetables.

Robots that are intelligent, adaptive and generalize cutting behavior with either a kitchen butter knife, or a surgical resection remains a difficult problem for researchers.

As it turns out, the process of cutting with feedback requires adaptation to stiffness of the objects, applied force during the cut, and often a sawing motion to cut through. To achieve this, researchers use a family of techniques which leverage feedback to guide the controller adaptation.

However, fluid controller adaptation requires very careful parameter tuning for each instance of the same problem. While these techniques are successful in industrial settings, no two cucumbers (or tomatoes) are the same, hence rendering these family of algorithms ineffective in a more generic setting.

In contrast, recent focus in research has been in building differentiable algorithms for control problems, which in simpler terms means that the sensitivity of output with respect to input can be evaluated without excessive sampling. Efficient solutions for control problems are achievable when the simulated dynamics is differentiable (1,2,3), but the process of simulating cutting has not been differentiable so far.

Differentiable simulation for cutting poses a challenge, since naturally cutting is a discontinuous process where crack formation and fracture propagation occur that prohibit the calculation of gradients. We tackle this problem by proposing a novel way of simulating cutting that represents the process of crack propagation and damage mechanics in a continuous manner.

DiSECt implements the commonly used Finite Element Method (FEM) to simulate deformable materials, such as foodstuffs. The object to be cut is represented by a 3D mesh which consists of tetrahedral elements. Along the cutting surface we slice the mesh following the Virtual Node Algorithm.

This algorithm duplicates the mesh elements that intersect the cutting surface, and adds additional, so-called “virtual” vertices on the edges where these elements are cut. The virtual nodes add extra degrees of freedom to accurately simulate the contact dynamics of the knife when it presses and slices through the mesh.

Next, DiSECt inserts springs connecting the virtual nodes on either side of the cutting surface. These cutting springs allow us to simulate damage mechanics and crack propagation in a continuous manner, by weakening them in proportion to the contact force the knife exerts on the mesh.

This continuous treatment allows us to differentiate through the dynamics in order to compute gradients for the parameters defining the properties of the material or the trajectory of the knife. For example, given the gradients for the vertical and sideways velocity of the knife, we can efficiently determine an energy-minimizing yet fast cutting motion through gradient-based optimization.

Research notes

Video

Deformable objects are simulated via the Finite Element Method (FEM). To simulate crack propagation and damage, we insert springs (shown in cyan) between the cut elements of the mesh which are weakened as the knife exerts contact forces.

We leverage reverse-mode automatic differentiation to efficiently compute gradients for hundreds of simulation parameters. Our simulator uses source code transformation which automatically generates efficient CUDA kernels for the forward and backward passes of all our simulation routines, such as the FEM or contact model.

Such an approach allows us to implement complex simulation routines which are parallelized on the GPU, while the gradients of the inputs with respect to the outputs of such routines are automatically derived from analyzing the abstract syntax tree (AST) of the simulation code.

Through gradient-based optimization algorithms, we can automatically tune the simulation parameters to achieve a close match between the simulator and real-world measurements. In one of our experiments, we leverage an existing dataset of knife force profiles measured by a real-world robot while cutting various foodstuffs.

We set up our simulator with the corresponding mesh and its material properties, and optimize the remaining parameters to reduce the discrepancy between the simulated and the real knife force profile.

Within 150 gradient evaluations, our simulator closely predicts the knife force profile, as we demonstrate on the examples of cutting an actual apple and a potato.

As shown in the figure, the initial parameter guess yielded a force profile that was far from the real observation, and our approach automatically found an accurate fit. We present further results in our accompanying paper that demonstrate that the found parameters generalize to different conditions, such as the downward velocity of the knife or the length of the reference trajectory window.

Evolution of the knife force profile while the simulation parameters are calibrated via gradient-based optimization. The ground-truth trajectory has been obtained from a real force sensor attached to a robot cutting a real apple.

We also generate additional data using a highly established commercial simulator, which allows us to precisely control the experimental setup, such as object shape and material properties. Given such data, we can also leverage the motion of the mesh vertices as an additional ground-truth signal. After optimizing the simulation parameters, DiSECt is able to predict the vertex positions and velocities, as well as the force profile, much more accurately.

 

Aside from parameter inference, the gradients of our differentiable cutting simulator can also be used to optimize the cutting motion of the knife. In our full cutting simulation, we represent a trajectory by keyframes, where each frame prescribes the downward velocity, as well as the frequency and amplitude of a sinusoidal sideways velocity. At the start of the optimization, the initial motion is a straight downward-pressing motion.
We optimize this trajectory with the objective to minimize the mean force on the knife and penalize the time it takes to cut the object. Studies have shown that humans perform sawing motions when cutting biomaterials in order to reduce the required force. Such behavior emerges from our optimization as well.

 

After 50 iterations with the Adam optimizer, we see a reduction in average knife force by 15 percent. However, the knife slices sideways further than its blade length. Therefore, we add a hard constraint to keep the lateral motion within valid limits and perform constrained optimization. Thanks to the end-to-end-differentiability of DiSECt, accurate gradients for such constraints are available, and lead to a valid knife motion which requires only 0.3 percent more force than the unconstrained result. Cutting food items multiple times results in slightly different force profiles for each instance, depending on the geometry of such materials. We additionally present results to transfer simulation parameters between different meshes corresponding to the same material. Our approach leverages optimal transport to find correspondences between simulation parameters of a source mesh and a target mesh (e.g., local stiffnesses) based on the location of the virtual nodes. As shown in the following figure, the 2D positions of these nodes along the cutting surface allow us to map simulation parameters (shown here is the softness of the cutting springs) to topologically different target geometries.

 

In our ongoing research, we are bringing our differentiable simulation approach to real-world robotic cutting. We investigate a closed-loop control system where the simulator is updated online from force measurements, while the robot is cutting foodstuffs. Through model-predictive planning and optimal control, we aim to find time- and energy-efficient cutting actions that apply to the physical system.
Print Friendly, PDF & Email

Share this:

  • Print
  • Facebook
  • LinkedIn
  • Reddit
  • Twitter
  • Tumblr
  • Pinterest
  • Skype
  • WhatsApp
  • Telegram
  • Pocket

You might also like…

Filed Under: Features, Science Tagged With: cutting, differentiable, force, knife, mesh, parameters, simulation, simulator

Join the Robotics & Automation News community

Reader Interactions

You must log in to post a comment.

Primary Sidebar

Latest articles

  • What to Look for When Searching for a Metal Fabrication Company
  • Unlock the Benefits of 25G Network with 25GBASE-SR Modules
  • Best Dentists in Dallas
  • Körber develops new robotic system for de-palletizing pallets to trays
  • Autonomous logistics startup Venti Technologies raises $28.8 million in Series A funding
  • Autonomous mobile robots market expected to expand at 22 percent a year
  • Will a robot take my job? Notre Dame researcher says this view is overly pessimistic
  • Flexiv partners with Doco Engineering to meet ‘expanding US robotics demand’
  • Addverb opens second software development centre in India
  • ABI Research gives 16 autonomous forklift system vendors competitive rankings

Most Read

  • Top 20 electric vehicle charging station companies
    Top 20 electric vehicle charging station companies
  • Top Benefits of Using Automation in Your Business
    Top Benefits of Using Automation in Your Business
  • Scientists have found more water in space than they ever knew possible
    Scientists have found more water in space than they ever knew possible
  • Difference Between Three-Phase and Single-Phase Power
    Difference Between Three-Phase and Single-Phase Power
  • What You Need to Know About Fixing an Engine Misfire
    What You Need to Know About Fixing an Engine Misfire
  • How to Know if Your iPhone is Being Tracked? Check This!
    How to Know if Your iPhone is Being Tracked? Check This!
  • IoT Basics: A Guide to the Internet of Things for Beginners
    IoT Basics: A Guide to the Internet of Things for Beginners
  • Top 20 programmable logic controller manufacturers
    Top 20 programmable logic controller manufacturers
  • Why is My Car Key Stuck in the Ignition?
    Why is My Car Key Stuck in the Ignition?
  • Hengbot unveils ‘world’s first robotic dog with musculoskeletal limbs’
    Hengbot unveils ‘world’s first robotic dog with musculoskeletal limbs’

Overused words

ai applications automated automation automotive autonomous business companies company control customers data design development digital electric global industrial industry logistics machine manufacturing market mobile operations platform process production robot robotic robotics robots safety software solution solutions system systems technologies technology time vehicle vehicles warehouse work

Secondary Sidebar

Latest news

  • What to Look for When Searching for a Metal Fabrication Company
  • Unlock the Benefits of 25G Network with 25GBASE-SR Modules
  • Best Dentists in Dallas
  • Körber develops new robotic system for de-palletizing pallets to trays
  • Autonomous logistics startup Venti Technologies raises $28.8 million in Series A funding
  • Autonomous mobile robots market expected to expand at 22 percent a year
  • Will a robot take my job? Notre Dame researcher says this view is overly pessimistic
  • Flexiv partners with Doco Engineering to meet ‘expanding US robotics demand’
  • Addverb opens second software development centre in India
  • ABI Research gives 16 autonomous forklift system vendors competitive rankings

Footer

We are…

Robotics and Automation News was established in May, 2015, and is now one of the most widely-read websites in its category.

Please consider supporting us by becoming a paying subscriber, or through advertising and sponsorships, or by purchasing products and services through our shop – or a combination of all of the above.

Thank you.

Independent

Archivists

August 2021
M T W T F S S
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
« Jul   Sep »

Complex

Old-skool

This website and its associated magazine, and weekly newsletter, are all produced by a small team of experienced journalists and media professionals.

If you have any suggestions or comments, feel free to contact us at any of the email addresses on our contact page.

We’d be happy to hear from you, and will always reply as soon as possible.

Future-facing

Free, fair and legal

We support the principles of net neutrality and equal opportunities.

Member of The Internet Defense League

Copyright © 2023 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT