• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Machine learning unlocks ‘superior performance’ in light-driven organic crystals

April 17, 2025 by Mark Allinson

Researchers at Waseda, University, Japan have developed a machine learning workflow to optimize the output force of photo-actuated organic crystals.

Using LASSO (least absolute shrinkage and selection operator) regression to identify key molecular substructures and Bayesian optimization for efficient sampling, they achieved a maximum blocking force of 37.0 mN – 73 times more efficient than conventional methods.

These findings could help develop remote-controlled actuators for medical devices and robotics, supporting applications such as minimally invasive surgery and precision drug delivery.

Materials that convert external stimuli into mechanical motion, known as actuators, play a crucial role in robotics, medical devices, and other advanced applications.

Among them, photomechanical crystals deform in response to light, making them promising for lightweight and remotely controllable actuation.

Their performance depends on factors such as molecular structures, crystal properties, and experimental conditions.

A key performance indicator of these materials is the blocking force – the maximum force exerted when deformation is completely restricted.

However, achieving high blocking forces remains challenging due to the complex interplay of crystal characteristics and testing conditions.

Understanding and optimizing these factors is essential for expanding the potential applications of photomechanical crystals.

In a step toward optimizing the output force of photo-actuated organic crystals, researchers from Waseda University have leveraged machine learning techniques to enhance their performance.

The study was led by Associate Professor Takuya Taniguchi from the Center for Data Science, along with Mr Kazuki Ishizaki and Professor Toru Asahi, both from the Department of Advanced Science and Engineering, Graduate School of Advanced Science and Engineering at Waseda University. Their findings were published online in Digital Discovery on 20 March 2025.

Dr Taniguchi says: “We noticed that machine learning simplifies the search for optimal molecules and experimental parameters.

“This inspired us to integrate data science techniques with synthetic chemistry, enabling us to rapidly identify new molecular designs and experimental approaches for achieving high-performance results.”

In this study, the team utilized two machine learning techniques: LASSO (least absolute shrinkage and selection operator) regression for molecular design and Bayesian optimization for selecting experimental conditions.

The first step led to a material pool of salicylideneamine derivatives, while the second enabled efficient sampling from this pool for real-world force measurements.

As a result, the team successfully maximized the blocking force, achieving up to 3.7 times greater force output compared to previously reported values and accomplishing this at least 73 times more efficiently than conventional trial-and-error method.

Dr Taniguchi says: “Our research marks a significant breakthrough in photo-actuated organic crystals by systematically applying machine learning.

“By optimizing both molecular structures and experimental conditions, we have demonstrated the potential to dramatically enhance the performance of light-responsive materials.”

The proposed technology has broad implications for remote-controlled actuators, small-scale robotics, medical devices, and energy-efficient systems.

Because photo-actuated crystals respond to light, they enable contactless and remote operation, making them ideal robotic components working in confined or sensitive environments.

Their ability to generate force noninvasively with focused light could also be valuable for microsurgical tools and drug delivery mechanisms that require precise, remote actuation.

By leveraging a cleaner energy input – light irradiation – while maximizing mechanical output, these materials hold promise for eco-friendly manufacturing processes and devices aimed at reducing overall energy consumption.

Dr Taniguchi adds: “Beyond improving force output, our approach paves the way for more sophisticated, miniaturized devices, from wearable technology to aerospace engineering and remote environmental monitoring.”

In conclusion, this study highlights the power of a machine learning-driven strategy in accelerating the development of high-performance photo-actuated materials, bringing them one step closer to real-world applications and commercial viability.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Science Tagged With: crystals, learning, light-driven, machine, organic, performance, superior

Primary Sidebar

Search this website

Latest articles

  • How Advanced Welding is Transforming Auto Repair
  • Top Digital Tools for Managing a Hybrid Workforce in the Automation Industry
  • automatica Summit: Megatrends in robotics and AI
  • Palantir and Divergent partner to ‘revolutionize’ on-demand advanced manufacturing
  • Semiconductor manufacturing faces labor crisis: Can the US train enough workers in time?
  • Energy company Carrier to invest additional $1 billion in US manufacturing
  • Incheon Airport continues automation push with electric vehicle charging robots from Hyundai
  • Hyundai installs AI-powered EV charging robots at South Korean airport
  • Japanese space agency awards GITAI contract to develop unique robotic arm
  • Why Rockwell Automation’s share price has surged more than 30 percent since April

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT