• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Interactive cyber-physical human: Generating contact-rich whole-body motions

February 7, 2023 by David Edwards

Performing human-like motions that involve multiple contacts is challenging for robots. In this regard, a researcher from the Tokyo University Science has envisioned an interactive cyber-physical human (iCPH) platform with complementary humanoid (physical twin) and simulation (digital twin) elements.

iCPH combines human measurement data, musculoskeletal analysis, and machine learning for data collection and augmentation. As a result, iCPH can understand, predict, and synthesize whole-body contact motions.

Humans naturally perform numerous complex tasks. These include sitting down, picking something up from a table, and pushing a cart. These activities involve various movements and require multiple contacts, which makes it difficult to program robots to perform them.

Recently, Professor Eiichi Yoshida of the Tokyo University of Science has put forward the idea of an interactive cyber-physical human (iCPH) platform to tackle this problem.

It can help understand and generate human-like systems with contact-rich whole-body motions. His work was published in Frontiers in Robotics and AI.

Professor Yoshida describes the fundamentals of the platform. “As the name suggests, iCPH combines physical and cyber elements to capture human motions,” he says.

“While a humanoid robot acts as a physical twin of a human, a digital twin exists as a simulated human or robot in cyberspace. The latter is modeled through techniques such as musculoskeletal and robotic analysis. The two twins complement each other.”

This research raises several key questions. How can humanoids mimic human motion? How can robots learn and simulate human behaviors? And how can robots interact with humans smoothly and naturally?

Professor Yoshida addresses them in this framework. First, in the iCPH framework, human motion is measured by quantifying the shape, structure, angle, velocity, and force associated with the movement of various body parts.

In addition, the sequence of contacts made by a human is also recorded. As a result, the framework allows the generic description of various motions through differential equations and the generation of a contact motion network upon which a humanoid can act.

Second, the digital twin learns this network via model-based and machine learning approaches. They are bridged together by the analytical gradient computation method. Continual learning teaches the robot simulation how to perform the contact sequence.

Third, iCPH enriches the contact motion network via data augmentation and applies the vector quantization technique. It helps extract the symbols expressing the language of contact motion.

Thus, the platform allows the generation contact motion in inexperienced situations. In other words, robots can explore unknown environments and interact with humans by using smooth motions involving many contacts.

In effect, the author puts forward three challenges. These pertain to the general descriptors, continual learning, and symbolization of contact motion. Navigating them is necessary for realizing iCPH. Once developed, the novel platform will have numerous applications.

Professor Yoshida, on the applications of iCPH, says: “The data from iCPH will be made public and deployed to real-life problems for solving social and industrial issues. Humanoid robots can release humans from many tasks involving severe burdens and improve their safety, such as lifting heavy objects and working in hazardous environments.

“iCPH can also be used to monitor tasks performed by humans and help prevent work-related ailments. Finally, humanoids can be remotely controlled by humans through their digital twins, which will allow the humanoids to undertake large equipment installation and object transportation.”

Using the iCPH as ground zero and with the help of collaborations from different research communities, including robotics, artificial intelligence, neuroscience, and biomechanics, a future with humanoid robots is not far.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Science Tagged With: contact, contacts, cyber-physical, data, digital, framework, help, human, humanoid, humanoids, humans, icph, learning, motion, motions, perform, platform, professor, robots, tasks, twin, yoshida

Primary Sidebar

Search this website

Latest articles

  • How Advanced Welding is Transforming Auto Repair
  • Top Digital Tools for Managing a Hybrid Workforce in the Automation Industry
  • automatica Summit: Megatrends in robotics and AI
  • Palantir and Divergent partner to ‘revolutionize’ on-demand advanced manufacturing
  • Semiconductor manufacturing faces labor crisis: Can the US train enough workers in time?
  • Energy company Carrier to invest additional $1 billion in US manufacturing
  • Incheon Airport continues automation push with electric vehicle charging robots from Hyundai
  • Hyundai installs AI-powered EV charging robots at South Korean airport
  • Japanese space agency awards GITAI contract to develop unique robotic arm
  • Why Rockwell Automation’s share price has surged more than 30 percent since April

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT