• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

ASME updates 3D printing standard to streamline production

June 11, 2022 by David Edwards

Since the 1940s, engineers have used a common design language – a set of definitions, symbols and practices – to draft engineering drawings that can serve as clear manufacturing blueprints or inspection checklists.

While this system still works well for many traditional manufacturing methods, it has not equipped engineers to produce clear and consistent design documents for additive manufacturing, commonly called 3D printing. And the absence of standard methods of communication leaves room for information about 3D-printing designs to be lost in translation.

This week the American Society of Mechanical Engineers (ASME) published an updated standard – based in large part on research by the National Institute of Standards and Technology (NIST) – that includes language specifically for 3D printing.

ASME’s standard, titled Y14.46 Product Definition for Additive Manufacturing, identifies important features unique to 3D printing and outlines how they should be documented.

The guidance could help engineers from a broad array of industries communicate to manufacturers, product inspectors and others more effectively. Its widespread adoption could clear a persistent roadblock to the application of 3D printing at a larger scale, unlocking the environmental and economic benefits associated with the technology.

“The industry is in a digital transformation right now, moving away from physical 2D drawings, and additive manufacturing is one of the catalysts since it requires digital 3D models,” said Fredric Constantino, an ASME project engineering adviser. “And if you’re working on one of those models, this standard will guide you in making it understandable to both 3D printers and other people.”

With subtractive manufacturing, a common production method, machines carve out parts from blocks of raw material according to instructions, which can be outlined in a digital or physical 2D drawing. By contrast, additively manufactured products take shape from the ground up, as printers churn out one layer at a time, fusing them into a predetermined shape that can only be dictated by a 3D model.

In addition to producing less waste than subtractive methods, 3D printing also allows for designs of higher complexity, such as those that are not completely solid, but partially hollow, filled with a meshwork that could come in many forms.

“Additive manufacturing has opened the door to a lot of unique design opportunities for engineers, but that freedom also creates challenges in communicating complex designs,” said NIST mechanical engineer Paul Witherell.

The lack of a consensus on how to convey aspects of a product related to 3D printing’s distinct capabilities has muddled communication between different organizations and created a barrier to more widespread use of the technology.

ASME responded to this roadblock in 2014, forming a committee of several dozen engineers from industry, academia and the federal government. The group, co-led by Witherell through 2019, sought to produce a uniform approach for defining 3D-printed products.

“We weren’t looking for ad hoc solutions. We were looking for solutions that could be standardized and implemented by the community to address these challenges with communication,” Witherell said. “We already know we can make good parts with additive manufacturing. Now the goal is to make lots of parts with additive manufacturing, and this is a necessary step.”

The committee developed the standard over the course of several years, drawing on input from 3D-printing experts and NIST research. They also incorporated feedback on a draft version of the standard released in 2017.

With the new guidance, the group introduces concepts to address not only the nuances of 3D-printing designs themselves, such as their potentially intricate internal geometry, but the peculiarities of the printing process. Factors, including the orientation of a print and whether temporary structural supports are printed, can influence the strength, durability and other properties of the end product.

Since printers need digital product information to be presented in a particular way, the guidance also includes a section on how to package 3D-model-based data so that it’s machine readable.

Designers are meant to reference the new standard along with several previously established standards, which cover basic design considerations that are relevant to a broad array of manufacturing methods.

3D printing holds several clear advantages over more well-established manufacturing methods, but it has not been implemented nearly to the same degree. One reason for this has been the lack of a fundamental way to get design ideas across – a gap now filled due to the efforts of ASME and NIST.

If adopted by major players in manufacturing, the standard could improve communication for 3D printing, potentially making for a more sustainable and efficient manufacturing industry in the future. However, expanding the standard along the way will be key.

“Some of ASME’s other standards go 10 years, 20 years without revision, but additive manufacturing is advancing so rapidly. We aim to keep pace by adding to this standard as time goes on,” Constantino said. “We expect it to evolve quickly.”

Main image: These 3D models exhibit many of the unique degrees of freedom afforded by additive manufacturing, also called 3D printing, such as producing parts with complex geometry and made of multiple materials. A new ASME standard, Y14.46, provides guidance for how to relay 3D-printing specific considerations in design documents. Credit: Reprinted from ASME Y14.46-2022, by permission of The American Society of Mechanical Engineers. All rights reserved.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Design, Features Tagged With: additive, asme, clear, communication, d-printing, design, designs, digital, engineers, guidance, manufacturing, methods, nist, parts, printing, product, standard

Primary Sidebar

Search this website

Latest articles

  • Outrider builds ‘first-in-industry’ safety system for driverless yard operations
  • Foundation EGI raises $23 million to build ‘world’s first engineering general intelligence platform’
  • How advanced automation is transforming waste management
  • Augmentus raises $11 million to scale physical AI for complex robotic surface finishing and welding
  • GreenBot unveils autonomous system for weeding woody crop areas
  • The Rise of the Autonomous Fab Shop: Why Waterjet Cutting is Leading the Automation Revolution
  • Mendaera receives FDA clearance for handheld robotic system for ultrasound-guided needle placement
  • Prime Vision robots optimize K-Parts order picking for motorbike spares
  • Vidnoz Review: The Free AI Video Generator That’s Redefining Content Creation
  • Cases Motorcycle Injury Lawyers Consider

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT