• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

A system for designing and training intelligent soft robots

December 6, 2021 by Mark Allinson

‘Evolution Gym’ is a large-scale benchmark for co-optimizing the design and control of soft robots that takes inspiration from nature and evolutionary processes

Let’s say you wanted to build the world’s best stair-climbing robot. You’d need to optimize for both the brain and the body, perhaps by giving the bot some high-tech legs and feet, coupled with a powerful algorithm to help enable the climb.

Although design of the physical body and its brain, the “control”, are key ingredients to letting the robot move, existing benchmark environments favor only the latter. Co-optimizing for both elements is hard – it takes a lot of time to train various robot simulations to do different things, even without the design element.

Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL), aimed to fill the gap by designing “Evolution Gym”, a large-scale testing system for co-optimizing the design and control of soft robots, taking inspiration from nature and evolutionary processes.

The robots in the simulator look a little bit like squishy, moveable Tetris pieces made up of soft, rigid, and actuator “cells” on a grid, put to the tasks of walking, climbing, manipulating objects, shape-shifting, and navigating dense terrain. To test the robot’s aptitude, the team developed their own co-design algorithms by combining standard methods for design optimization and deep reinforcement learning techniques.

The co-design algorithm functions somewhat like a power couple, where the design optimization methods evolve the robot’s bodies and the RL algorithms optimize a controller (a computer system that connects to the robot to control the movements) for a proposed design. The design optimization asks “how well does the design perform?”, and the control optimization responds with a score, which could look like a five for “walking”.

The result looks like a little robot Olympics. In addition to standard tasks like walking and jumping, the researchers also included some unique tasks, like climbing, flipping, balancing, and stair-climbing.

In over thirty different environments, the bots performed amply on simple tasks, like walking or carrying an item, but in more difficult environments, like catching and lifting, they fell short, showing the limitations of current co-design algorithms. For instance, sometimes the optimized robots exhibited what the team calls “frustratingly” obvious non-optimal behavior on many tasks. For example, the “catcher” robot would often dive forward to catch a falling block that was falling behind it.

Even though the robot designs evolved autonomously from scratch and without prior knowledge by the co-design algorithms, in a step toward more evolutionary processes, they often grew to resemble existing natural creatures while outperforming hand-designed robots.

“With Evolution Gym we’re aiming to push the boundaries of algorithms for machine learning and artificial intelligence,” says MIT undergraduate Jagdeep Bhatia, a lead researcher on the project.

“By creating a large-scale benchmark that focuses on speed and simplicity, we not only create a common language for exchanging ideas and results within the reinforcement learning and co-design space, but also enable researchers without state of the art compute resources to contribute to algorithmic development in these areas. We hope that our work brings us one step closer to a future with robots as intelligent as you or I.”

In certain cases, for robots to learn just like humans, trial and error can lead to the best performance of understanding a task, which is the thought behind reinforcement learning. Here, the robots learned how to complete a task like pushing a block by getting some information that will assist it, like “seeing” where the block is, and what the nearby terrain is like.

Then, a robot gets some measurement of how well it’s doing (the “reward”). The more the robot pushes the block, the higher the reward. The robot had to simultaneously balance exploration (maybe asking itself “can I increase my reward by jumping?”) and exploitation (further exploring behaviors that increase the reward).

The different combinations of “cells” the algorithms came up with for different designs were highly effective: one evolved to resemble a galloping horse with leg-like structures, mimicking what’s found in nature. The climber robot evolved two arms and two leg-like structures (kind of like a monkey) to help it climb. The lifter robot resembled a two-fingered gripper.

One avenue for future research is so-called “morphological development”, where a robot incrementally becomes more intelligent as it gains experience solving more complex tasks.

For example, you’d start by optimizing a simple robot for walking, then take the same design, optimize it for carrying, and then climbing stairs. Over time, the robot’s body and brain “morph” into something that can solve more challenging tasks compared to robots directly trained on the same tasks from the start.

“Evolution Gym is part of a growing awareness in the AI community that the body and brain are equal partners in supporting intelligent behavior,” says University of Vermont Robotics professor Josh Bongard. “There is so much to do in figuring out what forms this partnership can take. Gym is likely to be an important tool in working through these kinds of questions.”

Evolution Gym is open source and free to use. This is by design as the researchers hope that their work inspires new and improved algorithms in codesign.

The work was supported by the Defense Advanced Research Projects Agency. Bhatia wrote the paper alongside MIT undergraduate Holly Jackson, MIT CSAIL PhD student Yunsheng Tian, and Jie Xu, as well as MIT professor Wojciech Matusik. They will present the research at the 2021 Conference on Neural Information Processing Systems.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Science Tagged With: algorithms, block, body, brain, co-design, control, design, evolution, gym, intelligent, learning, mit, optimization, reward, robot, robots, soft, tasks, walking

Primary Sidebar

Search this website

Latest articles

  • Safety standards and innovations in human-robot collaboration
  • Outrider builds ‘first-in-industry’ safety system for driverless yard operations
  • Foundation EGI raises $23 million to build ‘world’s first engineering general intelligence platform’
  • How advanced automation is transforming waste management
  • Augmentus raises $11 million to scale physical AI for complex robotic surface finishing and welding
  • GreenBot unveils autonomous system for weeding woody crop areas
  • The Rise of the Autonomous Fab Shop: Why Waterjet Cutting is Leading the Automation Revolution
  • Mendaera receives FDA clearance for handheld robotic system for ultrasound-guided needle placement
  • Prime Vision robots optimize K-Parts order picking for motorbike spares
  • Vidnoz Review: The Free AI Video Generator That’s Redefining Content Creation

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT