• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

How to simplify the control architecture of cartesian coordinate robots

April 27, 2020 by Mai Tao

By Barry Weller, product manager at Mitsubishi Electric

In order to remain competitive, it is generally accepted that industries should adopt lean manufacturing strategies to improve process efficiency.

A key action can be to reduce part count, that is to say the number of components in an assembly or system. This is particularly challenging when it comes to highly accurate cartesian coordinate (linear) motion applications.

In these cases, machine builders would often need to use both PLCs and computer numerical controllers (CNCs) in order to fully manage movement within the machine – until now.

Cartesian coordinate robots are widely used to automate machine functions such as mechanical, laser or plasma cutting – quickly delivering highquality items that are consistent and can be highly customised.

A cartesian robot

While a cartesian coordinate robot and a CNC (computer numerical control) machine are not necessarily the same thing, the motion of both is typically controlled by a CNC system.

The reason for this lies in the simplicity of programming motion control trajectories with computer numerical controllers and their G-Code language.

This programming language is distinct because it instructs machines on where and how to move based on computer-aided design/manufacturing (CAD/CAM) images and files.

G-code reads CAD/CAM files for the intended end products and converts them into trajectories and directions for CNC servo drives within the cartesian coordinate robot.

As a result, highly accurate, precise and reproducible movements can create even the most complicated and unusual 2D shapes and contours.

While CNC solutions work well as robot controllers, they cannot monitor and guide other components, such as solenoid valves, clamps and air hoses – to do so, the unit needs a PLC.

This could theoretically handle tight tool control and feedback for all the different automation parts, eliminating the need for CNC systems.

However, writing motion control code for cartesian coordinate robots with any of the five PLC languages would be quite challenging. Consequently, machine builders and users need to use these two different control systems for one machine.

This solution is however far from ideal: additional hardware will only increase the total cost of ownership for the machine and can also affect build / commissioning time.

In fact, two separate control units need to share time-critical information, increasing potential cycle times and increasing the likelihood of communication jitters that could desynchronise PLC- and CNC-based processes on the same machine.

A holistic approach to motion programming, control and feedback

To address these issues, factory automation component and system manufacturers are beginning to invest in motion control technologies that cross the boundaries between PLCs and CNC systems to create integrated machine controllers that combine key functions from both solutions.

A good example is Mitsubishi Electric’s MELSEC iQ-R motion controller and its G-Code add-on library. By choosing this solution, machine builders can use general-purpose servos and MELSEC iQ-R series PLCs to implement CNC capabilities, if needed, by installing the G-Code library.

This allows the programming of highly accurate complex cutting trajectories and profiles in G-Code without the need for computer numerical controllers.

More precisely, the add-on function helps the system to follow PLC-specific programming instructions, such as Motion SFCs (sequential function charts), as well as automatically generate and read motion profiles from CAD/CAM files.

The G-Code programmes, available in text format, can be edited easily on Mitsubishi Electric’s HMIs or with any generic editor.

By eliminating the need for separate PLC and CNC component hardware, the MELSEC iQ-R system can synchronise the different processes within one machine and reduce cycle times.

Furthermore, the possibility to use one single solution for various applications, including CNC machining and easily switch between them allows machine builders to use it to control a complete production line.

As a result, businesses can benefit from a highly flexible, fast and cost-effective system that truly streamlines their industrial processes whilst delivering quality and consistency.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Industrial robots Tagged With: accurate, builders, cad/cam, cartesian, cnc, computer, control, controllers, coordinate, files, g-code, highly, iq-r, machine, melsec, mitsubishi, motion, numerical, plc, plcs, processes, programming, robot, robots, solution, system, systems, trajectories

Primary Sidebar

Search this website

Latest articles

  • Safety standards and innovations in human-robot collaboration
  • Outrider builds ‘first-in-industry’ safety system for driverless yard operations
  • Foundation EGI raises $23 million to build ‘world’s first engineering general intelligence platform’
  • How advanced automation is transforming waste management
  • Augmentus raises $11 million to scale physical AI for complex robotic surface finishing and welding
  • GreenBot unveils autonomous system for weeding woody crop areas
  • The Rise of the Autonomous Fab Shop: Why Waterjet Cutting is Leading the Automation Revolution
  • Mendaera receives FDA clearance for handheld robotic system for ultrasound-guided needle placement
  • Prime Vision robots optimize K-Parts order picking for motorbike spares
  • Vidnoz Review: The Free AI Video Generator That’s Redefining Content Creation

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT