• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Scientists develop ‘flexoskeletons’ that cost a dollar to 3D print

April 10, 2020 by David Edwards

Engineers at the University of California San Diego have developed a new method that doesn’t require any special equipment and works in just minutes to create soft, flexible, 3D-printed robots. (See video below.)

The innovation comes from rethinking the way soft robots are built: instead of figuring out how to add soft materials to a rigid robot body, the UC San Diego researchers started with a soft body and added rigid features to key components.

The structures were inspired by insect exoskeletons, which have both soft and rigid parts – the researchers called their creations “flexoskeletons”.

The new method allows for the construction of soft components for robots in a small fraction of the time previously needed and for a small fraction of the cost.

Nick Gravish, a mechanical engineering professor at the Jacobs School of Engineering at UC San Diego and the paper’s senior author, says: “We hope that these flexoskeletons will lead to the creation of a new class of soft, bioinspired robots.

“We want to make soft robots easier to build for researchers all over the world.”

The new method makes it possible to build large groups of flexoskeleton robots with little manual assembly as well as assemble a library of Lego-like components so that robot parts can be easily swapped.

The flexoskeletons are made from 3D printing a rigid material on a thin sheet that acts as a flexible base. They are printed with various features that increase rigidity in specific areas – again inspired by insect exoskeletons, which combine softness and rigidity for movement and support.

Researchers detail their work in the April 7 issue of the journal Soft Robotics.The team plans to make their designs available to researchers at other institutions as well as high schools.

One flexoskeleton component takes 10 minutes to print and costs less than $1. Flexoskeleton printing can be done on most low-cost commercially available printers. Printing and assembling a whole robot takes under 2 hours.

Researchers surveyed a range of materials until they found the right flexible surface to print the flexoskeletons on – that turned out to be a sheet of polycarbonate. Careful observation of insect behavior led them to add features to increase rigidity.

The ultimate goal is to create an assembly line that prints whole flexoskeleton robots without any need for hand assembly. A swarm of these small robots could do as much work as one massive robot on its own – or more.

In 1989, iRobot cofounder Rodney Brooks, then at the MIT Artificial Intelligence Lab, advocated for space missions that would consist of “large numbers of mass produced simple autonomous robots that are small by today’s standards”.

He and coauthor Anita Flynn titled the paper “Fast, cheap and out of control: a robot invasion of the solar system”. The paper was seminal for Gravish, who hopes this study is one step further in that direction – but for the entire field of robotics, not just space.

Main picture: PhD student James Jiang, the paper’s first author, shows one of the flexoskeletons developed with the researchers’ 3D printing method.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Design, News Tagged With: assembly, components, diego, features, flexible, flexoskeleton, flexoskeletons, insect, method, paper, print, printing, researchers, rigid, rigidity, robot, robots, san, small, soft

Primary Sidebar

Search this website

Latest articles

  • Levels of intelligence: Navigating the future of AI, from robotic arms to autonomous cars
  • Superwood: A potentially revolutionary material that could replace steel
  • Materials science startup InventWood raises $15 million for its ‘stronger than steel’ Superwood
  • MassVentures to award $4.5 million in grant funding to 26 ‘deep tech’ startups
  • ‘A Robot’s Dream’ analyzed at the Venice Biennale Architecture
  • Benefits of Investing in Quality Commercial Painting Services
  • Construction robotics: Building the future
  • Construction robotics market set to grow from $1.15 billion to $4.10 billion
  • Opinion: Are humanoid robots coming soon to the construction industry?
  • Realtime Robotics releases cloud-based software to accelerate design of robot cells

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT