• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Columbia university develops robotic neck brace that ‘dramatically improves’ movement

August 13, 2019 by David Edwards

Columbia university has developed a robotic neck brace that it says “dramatically improves functions in amyotrophic lateral sclerosis patients. (See video below.)

The brace incorporates both sensors and actuators to “restore roughly 70 percent of the active range of motion”.

The novel neck brace, which supports the neck during its natural motion, was designed by Columbia university engineers.

The developers say this is the first device shown to dramatically assist patients suffering from ALS in holding their heads and actively supporting them during range of motion.

This advance would result in improved quality of life for patients, not only in improving eye contact during conversation, but also in facilitating the use of eyes as a joystick to control movements on a computer, much as scientist Stephen Hawkins famously did.

A team of engineers and neurologists led by Sunil Agrawal, professor of mechanical engineering and of rehabilitation and regenerative medicine, designed a comfortable and wearable robotic neck brace that incorporates both sensors and actuators to adjust the head posture, restoring roughly 70 percent of the active range of motion of the human head.

Using simultaneous measurement of the motion with sensors on the neck brace and surface electromyography of the neck muscles, it also becomes a new diagnostic tool for impaired motion of the head-neck.

Their pilot study was published last week in the Annals of Clinical and Translational Neurology.

A study participant wearing the robotic neck brace that dramatically improves functions of ALS patients. The comfortable brace incorporates both sensors and actuators to restore roughly 70 percent of the active range of motion.

The brace also shows promise for clinical use beyond ALS, according to Agrawal, who directs the Robotics and Rehabilitation Laboratory.

Agrawal says: “The brace would also be useful to modulate rehabilitation for those who have suffered whiplash neck injuries from car accidents or have from poor neck control because of neurological diseases such as cerebral palsy.

“To the best of my knowledge, Professor Agrawal and his team have investigated, for the first time, the muscle mechanisms in the neck muscles of patients with ALS. Their neck brace is such an important step in helping patients with ALS, a devastating and rapidly progressive terminal disease,” says Hiroshi Mitsumoto, the Wesley J. Howe Professor of Neurology at the Eleanor and Lou Gehrig ALS Center at Columbia University Irving Medical Center who, along with Jinsy Andrews, assistant professor of neurology, co-led the study with Agrawal.

Mitsumoto adds: “We have two medications that have been approved, but they only modestly slow down disease progression. Although we cannot cure the disease at this time, we can improve the patient’s quality of life by easing the difficult symptoms with the robotic neck brace.”

Commonly known as Lou Gehrig’s disease, ALS is a neurodegenerative disease characterized by progressive loss of muscle functions, leading to paralysis of the limbs and respiratory failure.

Dropped head, due to declining neck muscle strength, is a defining feature of the disease.

Over the course of their illness, which can range from several months to more than 10 years, patients completely lose mobility of the head, settling into a chin-on-chest posture that impairs speech, breathing, and swallowing.

Current static neck braces become increasingly uncomfortable and ineffective as the disease progresses.

To test this new robotic device, the team recruited 11 ALS patients along with 10 healthy, age-matched subjects.

The participants in the study were asked to perform single-plane motions of the head-neck that included flexion-extension, lateral bending, and axial rotation.

The experiments showed that patients with ALS, even in the very early stages of the disease, use a different strategy of head-neck coordination compared to age-matched healthy subjects.

These features are well correlated with clinical ALS scores routinely used by clinicians. The measurements collected by the device can be used clinically to better assess head drop and the ALS disease progression.

Agrawal, who is also a member of Columbia University’s Data Science Institute, says: “In the next phase of our research, we will characterize how active assistance from the neck brace will impact ALS subjects with severe head drop to perform activities of daily life.

“For example, they can use their eyes as a joystick to move the head-neck to look at loved ones or objects around them.”

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Humanoids, News Tagged With: active, agrawal, als, brace, columbia, disease, dramatically, head, head-neck, motion, neck, patients, professor, range, robotic, sensors, study, university

Primary Sidebar

Search this website

Latest articles

  • Safety standards and innovations in human-robot collaboration
  • Outrider builds ‘first-in-industry’ safety system for driverless yard operations
  • Foundation EGI raises $23 million to build ‘world’s first engineering general intelligence platform’
  • How advanced automation is transforming waste management
  • Augmentus raises $11 million to scale physical AI for complex robotic surface finishing and welding
  • GreenBot unveils autonomous system for weeding woody crop areas
  • The Rise of the Autonomous Fab Shop: Why Waterjet Cutting is Leading the Automation Revolution
  • Mendaera receives FDA clearance for handheld robotic system for ultrasound-guided needle placement
  • Prime Vision robots optimize K-Parts order picking for motorbike spares
  • Vidnoz Review: The Free AI Video Generator That’s Redefining Content Creation

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT