• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • Skip to footer
  • Home
  • Subscribe
  • Your Membership
    • Edit Your Profile
  • Services
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsored posts
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Shop
    • My Account
    • Cart
  • About
    • Contact
    • Privacy
    • Terms of use
  • Events

Robotics & Automation News

Market trends and business perspectives

  • News
  • Features
  • Video
  • Webinars
  • White papers
  • Press releases
  • Featured companies
    • BlueBotics
    • SICK Sensor Intelligence
    • Vicor Power
fast radius steelcase chair

Beyond prototyping: Scaling up to additive manufacturing for production

September 28, 2018 by Sam Francis

By Charlie Wood, manager of computational engineering at Fast Radius

Most readers are likely well-acquainted with additive manufacturing – as a rapid prototyping tool, at least. And while many companies believe and perpetuate the myth that AM is only a prototyping tool, innovators in a range of markets (for example, aerospace, healthcare, consumer goods and more) are already using AM for production-grade manufacturing when design, performance and cost factors align.

Exploring AM as a means of production opens up design and performance possibilities simply not possible with CNC machining, urethane casting or injection molding. This article will cover how organizations can:

  • Identify if there’s a strong business case for switching to AM for your part or product.
  • Leverage design for additive manufacturing (DFAM) principles for a seamless transition from rapid prototyping to rapid production.

Building a business case for adopting production-grade additive manufacturing

Generally speaking, switching to production-grade AM for a part or product makes sense if there’s potential for adding value through:

Lightweighting your product


Lightweighting products using AM advances material usage and performance – and opens up the opportunity to capture savings throughout the product’s lifecycle. AM has enabled the weight reduction of aerospace parts by as much as 70 percent, saving about $3,000 per year in fuel.

Low-cost mass customization


Consumer demand for customization is rising, with 30 percent of Americans interested in product personalization. And additive manufacturing uniquely allows product designers to meet this demand with lower customization costs and lead times than legacy production methods.

Once the base component of your product has been validated with AM, personalizing the product with a corporate logo or different texture is a simple change in the CAD file – with no custom tooling required.

Allowing consumers to tailor a product to their design preferences or needs not only helps you stand out among the competition, but it also ultimately provides more value to the customer.

Enhancing your product’s performance


Virtually any shape, feature or function can be produced using AM. And product designers can experiment with vastly different geometries and textures with each design iteration without incurring retooling costs – which can range from $25,000 to $100,000.

Supply chain efficiency


It’s estimated that companies leveraging on-demand additive manufacturing can achieve total supply chain savings as high as 50 to 90 percent. Especially for companies selling large quantities of replacement parts, on-demand additive manufacturing opens up the opportunity to eliminate warehousing costs and reduce the risk of part obsolescence.

Faster product iteration

AM allows design teams to refine and optimize their product with each design iteration. And because you’re prototyping on the same machine your product will be produced on, you can begin to validate the manufacturing process and your product’s performance during the prototype stage. In some instances, the time it takes to go from initial product concept to final product design can be reduced by up to 90 percent.

There are many benefits to making the switch to AM, but of course there are challenges to consider. Producing a part through AM may mean you’re paying a higher per-part cost than conventional manufacturing.

However, those fees can be offset because AM also virtually eliminates the need for warehousing, which is critical because housing inventory can add anywhere from 20 to 25 percent to overall costs of production.

Applying smart design principles to amplify benefits of AM

While it’s possible to use additive manufacturing to replicate an existing part that’s produced using traditional methods, it isn’t the best use of AM. To maximize a part’s performance, cost savings and material usage, it’s best to design it from the ground up with the unique opportunities and constraints of additive in mind. Or, in other words, you should create your product using design for additive manufacturing (DFAM) principles.

DFAM draws on the same idea as design for manufacturability (DFM) – integrating process planning and product development. But instead of optimizing a product for urethane casting or injection molding, DFAM optimizes a product for production-grade manufacturing with additive technologies by analyzing competing factors to develop the most efficient design.

Additive manufacturing isn’t as simple as hitting print, especially when using DFAM principles to design a part for industrial-grade quality while minimizing production costs. But the resulting parts meet the performance of traditionally manufactured parts while reducing lead times, eliminating tooling costs and maximizing design flexibility. Leveraging DFAM guidelines early on in the product development process allows product design teams to optimize their designs to capture the value of AM.

Here are a few common principles of DFAM to consider when leaping from AM for prototyping to AM for production:

Minimize overhangs and reduce reliance on supports


Each successive slice of your part as it is printing (for example, in FDM, DMLS, and so on) relies on the layers below it for support. Large overhangs, openings and other features may require additional support during the build to prevent warping and ensure the product achieves its performance tolerances.

Parts designed with DFAM principles in mind will be self-supporting, minimizing the need for supporting features which can add cost through material waste and added post-processing needs.

And if supports are required, one cost-saving consideration would be to orient the part so that supports are placed in regions that aren’t user-facing, where marks are acceptable. This reduces the sanding and finishing time required in post-processing.

Part orientation

While additive manufactured parts can be built in many orientations, the angle at which a feature is built can affect its tolerances. And because features can only deviate from the spec so much until it affects tolerance limits, it’s important to consider a range of possible orientations early on in the design process. That way, you can identify which orientation is best-suited for producing your part.

Consider a T-shaped part. When oriented right-side-up, tall supports are required to prop up the overhangs on both side of the part.

Simply flipping the part upside down reduces the need for supports, and ultimately drives production efficiency by reducing surface finishing needs. Learn more about part orientation best practices here.

Consolidate multi-part assemblies


It’s difficult to produce complex shapes with traditional manufacturing, which can necessitate creating some products as multi-part assemblies. If you are transitioning your product from traditional to additive manufacturing, it can often be consolidated into fewer parts to significantly reduce assembly costs.

When Steelcase designed an arm cap using for additive manufacturing, for example, we transformed a three-part assembly into one uninterrupted part with multiple functional zones.

Leveraging generative design to optimize your part

The unique geometries possible through additive processes allows product designers to leverage generative design tools (for example, topology optimization or lattice structures) to optimize the structure of your part based on hundreds of variables.

And because lattices allow you to precisely tune the strength and material density in different regions of a part, one contiguous part can meet different performance requirements in different regions.

In the DFAM model, manufacturing is not the gating phase for part creation. Complex geometries, reduced material usage, on-demand customization and finely-tuned performance attributes are just the beginning of what’s possible.

The most important AM design consideration

None of these guidelines address one of the biggest obstacles to transitioning to production-grade AM: An AM product design skills gap. Because of this gap, the most important design guideline is to align yourself with AM product design experts at the outset of any DFAM project.

They will recommend design modifications that will optimize the cost and performance of your product. And they’ll understand how to drive efficiencies at the supply chain level through on-demand production and virtual warehousing.

The sooner you involve expert AM design and engineering support, the greater the benefits you stand to earn with your switch to additive.

About the author: Charlie Wood is the manager of computational engineering at Fast Radius, a leading provider of on-demand additive manufacturing technology solutions – from entirely new products enabled by additive manufacturing to global supply chain solutions leveraging a virtual warehouse.

Print Friendly, PDF & Email

Share this:

  • Print
  • Facebook
  • LinkedIn
  • Reddit
  • Twitter
  • Tumblr
  • Pinterest
  • Skype
  • WhatsApp
  • Telegram
  • Pocket

You might also like…

Filed Under: Features, Manufacturing Tagged With: additive manufacturing, design for additive manufacturing, fast radius

Join the Robotics & Automation News community

Primary Sidebar

Latest articles

  • Reasons to Consider a Career in the Manufacturing Industry
  • Why is My Car Key Stuck in the Ignition?
  • Bachmann Engineering gains certification from Universal Robots for its robot module solution
  • Walmart and Symbotic expand partnership to implement automation system
  • Comau brings high-speed robotic precision to the cosmetics industry
  • EAVX unveils autonomous ‘walk-in van’ prototype
  • MassRobotics launches $50,000 robotics competition
  • Remy Robotics exits stealth mode with launch of third autonomous robotic kitchen
  • Radial expands relationship with Locus Robotics
  • Things to consider while choosing a 45ft flat rack container

Most Read

  • Top 20 electric vehicle charging station companies
    Top 20 electric vehicle charging station companies
  • Difference Between Three-Phase and Single-Phase Power
    Difference Between Three-Phase and Single-Phase Power
  • Track your lost Android
    Track your lost Android
  • Top 20 programmable logic controller manufacturers
    Top 20 programmable logic controller manufacturers
  • Top 25 vertical farming companies
    Top 25 vertical farming companies
  • Remy Robotics exits stealth mode with launch of third autonomous robotic kitchen
    Remy Robotics exits stealth mode with launch of third autonomous robotic kitchen
  • The Best Mechanical Engineering Design Software in 2022
    The Best Mechanical Engineering Design Software in 2022
  • Top 10 graphics processing unit manufacturers: Nvidia clearly in the lead
    Top 10 graphics processing unit manufacturers: Nvidia clearly in the lead
  • Scientists have found more water in space than they ever knew possible
    Scientists have found more water in space than they ever knew possible
  • What You Need to Know About Fixing an Engine Misfire
    What You Need to Know About Fixing an Engine Misfire

Overused words

abb ai applications automated automation automotive autonomous business china companies company control customers data design development digital electric global industrial industry logistics machine manufacturing market mobile platform process production robot robotic robotics robots safety software solution solutions system systems technologies technology time vehicle vehicles warehouse

Secondary Sidebar

Latest news

  • Reasons to Consider a Career in the Manufacturing Industry
  • Why is My Car Key Stuck in the Ignition?
  • Bachmann Engineering gains certification from Universal Robots for its robot module solution
  • Walmart and Symbotic expand partnership to implement automation system
  • Comau brings high-speed robotic precision to the cosmetics industry
  • EAVX unveils autonomous ‘walk-in van’ prototype
  • MassRobotics launches $50,000 robotics competition
  • Remy Robotics exits stealth mode with launch of third autonomous robotic kitchen
  • Radial expands relationship with Locus Robotics
  • Things to consider while choosing a 45ft flat rack container

Footer

We are…

Robotics and Automation News was established in May, 2015, and is now one of the most widely-read websites in its category.

Please consider supporting us by becoming a paying subscriber, or through advertising and sponsorships, or by purchasing products and services through our shop – or a combination of all of the above.

Thank you.

Independent

Archivists

September 2018
M T W T F S S
 12
3456789
10111213141516
17181920212223
24252627282930
« Aug   Oct »

Complex

Old-skool

This website and its associated magazine, and weekly newsletter, are all produced by a small team of experienced journalists and media professionals.

If you have any suggestions or comments, feel free to contact us at any of the email addresses on our contact page.

We’d be happy to hear from you, and will always reply as soon as possible.

Future-facing

Free, fair and legal

We support the principles of net neutrality and equal opportunities.

Member of The Internet Defense League

Copyright © 2022 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT