• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
fraunhofer new gen robot tech copy

Fraunhofer developing ‘next generation of industrial robots’

July 18, 2018 by Sam Francis

The Fraunhofer Institute in Germany is developing what it says will be the “next generation of industrial robots”, which integrate new kinematics for milling, customized, high-precision manufacturing

Manufacturers generally must offer high-quality products at low prices in order to remain competitive.

In a bid to provide the production technologies they will require, three Fraunhofer Institute teams are working together on what they say is “the next generation of industrial robots which will facilitate cost-effective production processes”.

The researchers are focusing on developing a new kinematics for milling lightweight materials, metals, and steels. The aim: achieving a production tolerance of just 0.1 millimeters all over the robot workspace starting with the very first component. 

More and more consumers are demanding made-to-order, customized products. The production facilities of tomorrow will need to be efficient and versatile if they hope to meet increasingly stringent requirements and the specific needs of each customer – all while mastering the pressure of rising costs.

High-precision machine tools that impart a certain geometrical shape to workpieces remain the solution of choice. Conventional industrial robots have simply been unable, due to their insufficient precision, to supplant such machine tools.

Using robots for milling operations remains particularly challenging.

Primarily due to the gear units, low robot stiffness deflects the tool – reducing its appeal for use.

Indeed, production staff must comply with extremely tight production tolerances every time they machine lightweight materials, such as aluminum or carbon fiber reinforced plastic (CFRP), as well as metals, and steels.

Customized production, even for a batch size of one

Researchers working on Fraunhofer’s “Flexmatik 4.1“ joint research project are developing an industrial robot designed for the high-precision milling of lightweight materials.

The project partners are the Fraunhofer Institutes for Production Systems and Design Technology IPK, for Manufacturing Technology and Advanced Materials IFAM, and for Structural Durability and System Reliability LBF.

The researchers say they must overhaul the kinematics if the robot is to prove successful.

Sascha Reinkober, department head at Fraunhofer IPK, says: “We’re engineering a multi-axis kinematic chain that is specially designed for continuous path processes.”

The robot proceeds from point A to point B of the component being machined by traversing a linear unit, a type of rail.

Jan Hansmann, project leader at Fraunhofer LBF, says: “The system simulations we conducted during the design phase indicate that we can achieve a precision objective of plus/minus 0.1 millimeters.

“This will be possible starting from the very first component, despite the process forces acting on it. Manufacturers can therefore customize production, even for a batch size of just one unit.

“Under the exposure of process forces, the robot will stray far less from its programmed target path. The robot can consequently drill a hole at the intended spot of the component with far greater precision, for instance.”

To ensure high precision, the team of researchers is developing a new drive concept for individual axes. Partially direct drives are used, which are considerably stiffer during operation than today’s high-tech gear units.

And a new climate-control strategy minimizes imprecision due to temperature fluctuations. The robot is also equipped with a cnc control for machine tools. Last but not least, the new Flexmatik features an active vibration control system.

The new designed robot offers key benefits compared to machine tools: the cost of acquisition decreases by as much as a factor of 10 and the energy consumption by as much as a factor of 15.

Thanks to its linear unit, the Flexmatik exhibits a workspace on par with large portal milling machines – and better accessibility.

Compared to a portal milling machine, the Flexmatik does not require a special heavy foundation. This keeps construction costs lower and grants users flexibility in setting it up. Fraunhofer researchers want to complete a functional prototype by the end of 2018.

Their innovative milling robot can handle a broad range of applications – including the machining of large CFRP structures such as fuselages, the milling of components for gas turbines, and the re-contouring of press tools.

Sven Philipp von Stürmer, project leader at Fraunhofer IFAM, says: “The Flexmatik is a suitable choice for many applications in practically all sectors which use machine tools.

“But it’s not about replacing machine tools. The Flexmatik can instead be a useful addition that shares workloads. The ultimate goal is to make production processes more cost-effective.”

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Industrial robots, Industry Tagged With: fraunhofer institute, industrial robots, research

Primary Sidebar

Search this website

Latest articles

  • Autonomous Solutions Inc moves into construction sector with SoftBank backing
  • What the Robotics Industry Needs from Colleges: A Systems-Based Look at Education’s Role in Automation
  • The Silent Signal Crisis: How AI in E-commerce is Only as Smart as the Data it Misses
  • Sunrise Robotics emerges from stealth with $8.5 million funding
  • Industrial vehicle automation specialist ASI opens new office in Utah
  • Premier Automation launches innovation hub with support from Pennsylvania
  • Opinion: AI’s ‘real value is in eliminating everyday inefficiencies’
  • MES & Industry 4.0 Summit kicks off in Porto with global manufacturing leaders
  • Agentic AI startup Landbase raises $30 million in Series A funding
  • Dürr and GROB showcase new concept factory for battery cell production

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT