• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
autonomous cars

Ansible Motion developing defence against motion sickness for autonomous cars

September 12, 2016 by David Edwards

autonomous cars

With more people set to be reading or using screens in their autonomous cars, Ansible Motion’s simulation technology could highlight what features could prevent sickness from happening

When self-driving cars become the norm, we’re going to have much more spare time, as we’ll no longer be chained to the steering wheel with our eyes locked on the road ahead.

This is brilliant news as we’ll have more time to read, work and play driving games on our phones instead. But it could have one downside: Motion sickness.

Motion sickness is already a problem for many passengers – and when we all become passengers, it seems inevitable that it’ll get worse. In fact, experts are already predicting that between 6 per cent and 12 per cent of Americans can expect to get sick travelling in an autonomous vehicle. 

But there is some good news: Car manufacturers today are already working on designing vehicles that will mitigate motion sickness – and they are using driving simulator technology from a UK company called Ansible Motion to do it. The simulator is different to the sort that powers driving games or trains pilots.

According to Ansible Motion’s technical liaison, Phil Morse, this type of simulator, called “Driver in the Loop”, is “dynamics-class”. This means that it isn’t just for measuring human reactions, like other types of automotive driving simulators or how a flight simulator for training pilots might be – but thanks to some sophisticated engineering, it can be used to virtually prototype vehicles and different on-car components.

The value of a driving simulator in the design process then is this: Being able to switch out and test individual components in thousands of different scenarios, with real people behind the wheel, without needing to actually build a car to start with. In fact, without the simulator it may soon be impossible to design a modern car without going to utterly enormous expense.

And this is where the technology can be put to work on motion sickness. Motion sickness is caused when the images we see fall out of sync with the movement we feel.

It’s why, say, reading a book or watching a video while a passenger in a car can make us feel queasy – as there is a disconnect between what we’re looking at and the feeling of the road bumping beneath the seat and trees zipping by in our peripheral vision. It can also happen when playing with virtual reality for the same reasons.

Ansible Motion’s driving simulator enables designers to test different components and conditions entirely virtually – changing things like the shape of the windows, the vibrations from different road surfaces, sound levels and the car’s suspension.

By swapping these components around virtually, designers can see what combination gives the smoothest ride. This means that when the first physical prototypes are created they are already designed to mitigate motion sickness.

“Our own simulation methodology, by default, inserts a layer of controllable sensory content – for motion, vision, haptic feedback, and so on,” Morse says.

Normally, there are no modifications made to this “layer” of the simulation, but he indicates that one way of studying motion sickness is figuring out how to induce it deliberately, by tweaking the simulator’s settings.

“This can be a useful way to explore human sensitivities while people are engaged in different tasks inside a car. And then the understanding of these sensitivities can wrap back around and inform the real vehicle design,” he explains.

So the future could be significantly less nauseating – and it’s a good example of the power of a dynamics class simulator.

Ansible Motion is ahead of the curve in this respect, as the need for pre-testing components in simulators is going to become even more crucial as we start to transition to autonomous vehicles.

The reason for this simple: Safety. Maintaining the trust of motorists and passengers is going to be crucial if we’re to transition to autonomous vehicles successfully.

But making the switch will be difficult by the very nature of the transition. Cars will have to handle both autonomous driving, on roads such as motorways and then switch to manual controls when drivers turn off into more environmentally complex cities.

The injection of a human element adds an extra layer of complication – as unlike machines we are often unpredictable. So computer systems need to be designed to work with all of our quirks and flaws.

But given this, the introduction of driving simulators to the design process should be a good sign – as not only will they help autonomous vehicles cope with the things that make us human, but they’ll help make travelling a better experience all together.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Computing, News, Transportation Tagged With: ansible, autonomous, car, cars, components, driving, human, motion, sickness, simulator, vehicles

Primary Sidebar

Search this website

Latest articles

  • Levels of intelligence: Navigating the future of AI, from robotic arms to autonomous cars
  • Superwood: A potentially revolutionary material that could replace steel
  • Materials science startup InventWood raises $15 million for its ‘stronger than steel’ Superwood
  • MassVentures to award $4.5 million in grant funding to 26 ‘deep tech’ startups
  • ‘A Robot’s Dream’ analyzed at the Venice Biennale Architecture
  • Benefits of Investing in Quality Commercial Painting Services
  • Construction robotics: Building the future
  • Construction robotics market set to grow from $1.15 billion to $4.10 billion
  • Opinion: Are humanoid robots coming soon to the construction industry?
  • Realtime Robotics releases cloud-based software to accelerate design of robot cells

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT