• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Automation in Construction: Researchers develop automated system to measure strain and acceleration of precast concrete structures

March 13, 2023 by Mark Allinson

Reserarchers at Chung-Ang University, South Korea have developed a smart portable sensing system for monitoring precast structures during delivery. The multimetric portable system uses an IoT sensor to simultaneously measure strain and acceleration of the structures real-time during delivery.

Precast concrete structures (PCS) reduce workforce dependency and construction time. However, they are subjected to vibrations and strain during transport from their manufacturing site to the construction site.

Effective quality control measures require continuous logging of vibration and strain measurement during the delivery, an essential feature that is missing in current systems. To this end, researchers have now developed a novel portable sensing system that can monitor strain and acceleration to enable efficient PCS delivery.

Precast structures are like giant lego blocks made of concrete that are manufactured in a factory to enable seamless construction at a building site. Modern urban construction projects rely heavily on precast concrete structures (PCS) for a quality and timely completion.

PCS are manufactured in a controlled environment that ensures the highest quality. However, during delivery to the construction site, they can be damaged by shocks and imbalanced loads during lifting that make them unstable.

Sometimes, the damage can go unnoticed during on-site construction. However, this can lead to a potentially dangerous situation over time. Moreover, high replacement costs and long downtimes make remedial measures ineffective.

“We have seen multiple instances of damage during transportation; we are, therefore, working on a solution to address this issue using an IoT sensing system to monitor PCS during delivery,” says Associate Professor Jongwoong Park from Chung-Ang University, who has been actively researching on Internet of Things (IoT) sensor systems.

To this end, Dr. Park and his colleagues at Chung-Ang University recently developed a smart sensing system to monitor PCS during transportation in real time. The system integrates IoT sensors that detect vibrations and deformations during movement.

In a recent article published in Automation in Construction, the researchers detailed the development of this specialized IoT-based sensing system. The paper was made available online on 16 November 2022 and was published in Volume 145 of the journal in 01 January 2023.

“We have enhanced the portability of the sensing system and have created a method for monitoring the deformation of precast structures during lifting and transportation. This system can help prevent any damage that may occur during transportation, ensuring a safe and sound delivery,” explains Dr Park.

The novel portable wireless sensing system is capable of real-time recording of acceleration and strain measurement during transport. Moreover, the system generates a safety assessment report for PCS that adjusts initial strain offset and calculates the absolute strain.

To demonstrate the capabilities of their smart system, the researchers further conducted a field test constituting an 80-minute delivery of a 12-meters long precast concrete beam and evaluated its condition by measuring the acceleration, tilts, and strain of the structure in real time. Further, the researchers processed and analyzed the measured data and conducted a safety assessment.

Interestingly, while the results indicate that the sensing system was effective for precast monitoring, the system does not allow for timely decisions by supporting real-time data management. In this regard, future research is required towards developing a cloud-based monitoring system that can alert users of anomalies in real time.

Nevertheless, the novel development by the team has potential for immediate smart delivery monitoring applications in construction projects.

“With our IoT-based precast monitoring system, we can ensure the long-term safety and reliability of precast structures. This technology will prevent such issues from occurring, making our buildings safer and more efficient in the future,” says an optimistic Dr Park.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Science Tagged With: acceleration, construction, delivery, monitoring, pcs, precast, researchers, sensing, strain, structures, system, time

Primary Sidebar

Search this website

Latest articles

  • Canadarm2 grapples Cygnus XL in key robotic arm manoeuvre at the ISS
  • Autonomous underwater waste collection soon to be a reality
  • Italian Institute of Technology develops robot for vineyard applications
  • Flexiv to make largest appearance yet at China International Industry Fair
  • Why Well Fitted Construction Uniforms Are Becoming a Safety Imperative?
  • Inspection and maintenance robots: Reaching the unreachable and dangerous
  • Fugro and NOAA partner to advance remote deep-ocean mapping
  • Meiko Group partners with Fizyr and Yaskawa Europe on automated dishwashing
  • The Precision Engineering Foundations of Next-Generation Robotics
  • ABB to invest an extra $110 million in US manufacturing

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT