• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events

Soft assistive robotic wearables get a boost from rapid design tool

July 24, 2022 by David Edwards

Scientists created a new design and fabrication tool for soft pneumatic actuators with integrated sensing, which can power personalized healthcare, smart homes, and gaming.

Soft, pneumatic actuators might not be a phrase that comes up in daily conversations, but more likely than not you might have benefited from their utility. The devices use compressed air to power motion, and with sensing capabilities, they’ve proven to be a critical backbone in a variety of applications such as assistive wearables, robotics, and rehabilitative technologies.

But there’s a bit of a bottleneck in creating the little dynamic devices that have advantages like high response rates and power to input ratios. They require a manual design and fabrication pipeline, which translates to a lot of trial and error cycles to actually test and see whether the designs will work.

Scientists from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) devised a scalable pipeline to computationally design and digitally fabricate soft pneumatic actuators called “PneuAct”.

PneuAct uses a machine knitting process – not dissimilar to your grandma’s plastic needle knitting – but this machine operates autonomously.

A human designer simply specifies the stitch and sensor design patterns in software to program how the actuator will move, and it can then be simulated before printing. The textile piece is fabricated by the knitting machine, which can be fixed to an inexpensive, off-the-shelf rubber silicone tube to complete the actuator.

The knitted actuator integrates conductive yarn for sensing, allowing the actuators to “feel” what they touch. The team cooked up several prototypes spanning an assistive glove, a soft hand, an interactive robot, and a pneumatic walking quadruped. Their devices were wrapped in a soft, yellow fabric that made them look a little bit like banana fingers.

While there’s been plenty of movement in the hardware development of soft pneumatic actuators over the years – a 2019 prototype of a collaborative robot used such actuators to reproduce human-like gripping in its hands – the design tools haven’t improved with quite as much speed.

Old processes have typically used polymers and molding, but the scientists used a combination of elastic and sensing stitches (with conductive yarn) that allows for programming bending of the devices when they’re inflated, and the ability to incorporate real world feedback.

For example, the team used the actuators to build a robot that sensed when it was touched specifically by human hands, and reacted to that touch.

The team’s glove can be worn by a human to supplement finger muscle movement, minimizing the amount of muscle activity needed to complete tasks and motions. This could hold a lot of potential for those with injury, limited mobility, or other trauma to the fingers.

The method can also be used to make an exoskeleton (wearable robotic units controlled by a computer that supplement human motion and restore locomotion and movement); and to that end they made a sleeve that can help wearers bend their elbow, knee, or other body parts.

Yiyue Luo, MIT CSAIL PhD student and lead author of a new paper about the research, says: “Digital machine knitting, which is a very common manufacturing method in today’s textile industry, enables ‘printing’ a design in one go, which makes it much more scalable.

“Soft pneumatic actuators are intrinsically compliant and flexible, and combined with intelligent materials, they’ve become a necessary force in many robots and assistive technologies – and rapid fabrication, with our design tool, can hopefully increase ease and ubiquity.”

Making sense of sensors

One type of sensing the team incorporated was called “resistive pressure sensing,” where the actuator “sends” pressure. When fabricating a robotic gripper, it would try to grab onto something, and the pressure sensor would sense how much force was being applied to the object, and then it would try to see whether the grasp was successful or not.

The other type is “capacitive sensing”, where the sensor discerns some information on the materials that the actuator is getting in touch with.

The actuators are sturdy- no yarn was harmed in the process – one limitation of the system is that they were limited to tube-shaped actuators, because it’s very easy to buy them off the shelf. A logical next step is exploring actuators of different shapes, to avoid being constrained by that single structure.

Another extension the scientists will explore is extending the tool to incorporate a task-driven, optimization-based design, where users can specify target poses and optimal stitch patterns that can be automatically synthesized.

Andrew Spielberg, postdoctoral fellow in Materials Science and Mechanical Engineering at Harvard University, another author on the paper, says: “Our software tool is fast, easy to use, and it accurately previews users’ designs, allowing them to quickly iterate virtually while only needing to fabricate once. But this process still requires some trial-and-error from humans.

“Can a computer reason about how textiles should be physically programmed in actuators to allow for rich, sensing-driven behavior? That’s the next frontier.”

Luo wrote the paper alongside Kui Wu, former MIT CSAIL PhD student, Spielberg, MIT CSAIL mechanical engineer Michael Foshey, and MIT professors Tomas Palacios, Daniela Rus, Wojciech Matusik.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Features, Science Tagged With: actuator, actuators, assistive, computer, csail, design, devices, human, knitting, machine, mit, movement, paper, pneumatic, pressure, process, robot, scientists, sensing, sensor, soft, team, tool, touch, yarn

Primary Sidebar

Search this website

Latest articles

  • Logic unveils ‘Octopus’ overhead robot for warehouse operations
  • Zoox launches public robotaxi service in Las Vegas
  • Roush delivers first Kodiak Driver-equipped autonomous truck
  • Exotec and E80 Group agree strategic partnership
  • Toray and T2 launch autonomous truck trial for petrochemical transport
  • Serve Robotics adds Voysys teleoperation technology to its delivery robots
  • LAPP ‘cuts labor and boosts accuracy’ with autonomous drone inventory solution
  • Nexcom to launch ‘safety-centric humanoid robot controller’
  • Trio launches Motion-PLC controllers to ‘simplify stand-alone machine design’
  • Matthews Automation expands investment in Freespace Robotics with warehouse solution purchase

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT