• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
nvidia ceo jensen huang

Nvidia opens robotics research lab in Seattle

January 14, 2019 by Abdul Montaqim

Nvidia is opening a new robotics research lab in Seattle near the University of Washington campus led by Professor Dieter Fox, senior director of robotics research at Nvidia and professor in the UW Paul G. Allen School of Computer Science and Engineering. (See video below.)

The charter of the lab is to drive breakthrough robotics research to enable the next generation of robots that perform complex manipulation tasks to safely work alongside humans and transform industries such as manufacturing, logistics, healthcare, and more.

Professor Dieter Fox says: “In the past, robotics research has focused on small, independent projects rather than fully integrated systems.

“We’re bringing together a collaborative, interdisciplinary team of experts in robot control and perception, computer vision, human-robot interaction, and deep learning.” 

Close to 50 research scientists, faculty visitors, and student interns will perform foundational research in these areas. To ensure the research stays relevant to real-world robotics problems, the lab will investigate its work in the context of large scale, realistic scenarios for interactive manipulation.

researchers SEA-Robotics-38 copy
Researchers at the Nvidia Seattle robotics lab

What’s cooking in the robotics research lab?

The first of these challenge scenarios is a real-life kitchen where a mobile manipulator solves a variety of tasks, ranging from retrieving objects from cabinets to learning how to clean the dining table to help a person cook a meal.

At an Open House event on January 11, the Seattle lab demonstrated its first manipulation system in their kitchen. The mobile manipulator integrates state-of-the-art techniques to detect and track objects, keep track of the state of doors and drawers in the kitchen, and open/close them to get access to objects for manipulation.

An experimental robot to research and analyse some of the tasks in the kitchen.
An experimental robot to research and analyse some of the tasks in the kitchen.

These approaches can be applied in arbitrary environments, only requiring 3D models of relevant objects and cabinets.

Building on Nvidia’s expertise in physics-based, photorealistic simulation, the robot uses deep learning to detect specific objects solely based on its own simulation, not requiring any tedious manual data labeling.

Nvidia’s highly parallelized GPU processing enables the robot to keep track of its environment in real-time, using sensor feedback for accurate manipulation and to quickly adapt to changes in the environment.

The robot uses the Nvidia Jetson platform for navigation and performs real-time inference for processing and manipulation on Nvidia Titan GPUs. The deep learning-based perception system was trained using the cuDNN-accelerated PyTorch deep learning framework.

What makes the system unique is that it integrates a suite of cutting-edge technologies developed by the lab researchers. These technologies working together enable detection of objects, tracking the position of doors and drawers, and generate control commands so that the robot can grasp and move objects from one place to another.

The system is comprised and built on the following technologies:

  • Dense Articulated Real-Time Tracking (DART): DART, which was first developed in Fox’s UW robotics lab, uses depth cameras to keep track of a robot’s environment. It is a general framework for tracking rigid objects, such as coffee mugs and cereal boxes, and articulated objects often encountered in indoor environments, like furniture and tools, as well as human and robot bodies including hands and manipulators.
  • Pose-CNN: 6D Object Pose Estimation: Detecting the 6D pose and orientation of known objects is a crucial capability for robots that pick up and move objects in an environment. This problem is challenging due to changing lighting conditions and complex scenes caused by clutter and occlusions between objects. Pose-CNNisa deep neural network trained to detect objects using regular cameras.
  • Riemannian Motion Policies (RMPs) for Reactive Manipulator Control: RMPs are a new mathematical framework that consistently combines a library of simple actions into complex behavior. RMPs allow the team to efficiently program fast, reactive controllers that use the detection and tracking information from Pose -CNN and DART to safely interact with objects and humans in dynamic environments.
  • Physics-based Photorealistic Simulation: Nvidia’s Isaac Sim tool enables the generation of realistic simulation environments that model the visual properties of objects as well as the forces and contacts between objects and manipulators. A simulated version of the kitchen is used to test the manipulation system and train the object detection network underlying Pose-CNN. If done on a real robot this training and development process would be an expensive and time-consuming process. Once simulation models of objects and the environment are available, training and testing can be done far more efficiently, saving precious development time.

Fox says: “We really feel that the time is right to develop the next generation of robots. By pulling together recent advances in perception, control, learning, and simulation, we can help the research community solve some of the world’s greatest challenges.”

(Main picture: Jensen Huang, CEO of Nvidia, pictured at the new Seattle robotics lab.)

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Computing, Features Tagged With: nvidia, research, robotics, seattle

Primary Sidebar

Search this website

Latest articles

  • Fugro and NOAA partner to advance remote deep-ocean mapping
  • Meiko Group partners with Fizyr and Yaskawa Europe on automated dishwashing
  • The Precision Engineering Foundations of Next-Generation Robotics
  • ABB to invest an extra $110 million in US manufacturing
  • GlaxoSmithKline to invest $30 billion in R&D and manufacturing in the US
  • Eli Lilly to build $5 billion manufacturing facility in Virginia
  • Sonair raises $6 million to accelerate launch of ‘world’s first safe 3D ultrasonic sensor for robots’
  • ASG Power advances sustainability and efficiency through new training initiative
  • GMI and AINEXXO form strategic alliance to launch ‘self-aware and self-protecting factory’
  • SoftBank develops ‘robot-friendly’ server rack to enable automation at data centers

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT