• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
singapore uni ikea robots

Singapore university develops robotic system to build Ikea furniture

May 7, 2018 by Sam Francis

A group of scientists at a university in Singapore has developed a robotic system which can autonomously assemble Ikea furniture. (See video below.)

Ikea is a globally famous furniture retailer which supplies furniture flat-packed, which the customer usually assembles after taking home.

The scientists at Nanyang Technological University say the robotic arms can put together a chair “without interruption”. 

Designed by Assistant Professor Pham Quang Cuong and his team from NTU’s School of Mechanical and Aerospace Engineering, the robot comprises a 3D camera and two robotic arms equipped with grippers to pick up objects.

The team coded algorithms using three different open-source libraries to help the robot complete its job of putting together the Ikea chair.

It assembled Ikea’s Stefan chair in 8 minutes and 55 seconds. Prior to the assembly, the robot took 11 minutes and 21 seconds to independently plan the motion pathways and 3 seconds to locate the parts.

The results are published in the journal Science Robotics today (18 April).

Asst Prof Pham says: “For a robot, putting together an IKEA chair with such precision is more complex than it looks.

“The job of assembly, which may come naturally to humans, has to be broken down into different steps, such as identifying where the different chair parts are, the force required to grip the parts, and making sure the robotic arms move without colliding into each other.

“Through considerable engineering effort, we developed algorithms that will enable the robot to take the necessary steps to assemble the chair on its own.

“We are looking to integrate more artificial intelligence into this approach to make the robot more autonomous so it can learn the different steps of assembling a chair through human demonstration or by reading the instruction manual, or even from an image of the assembled product.”

The NTU team of Asst Prof Pham, research fellow Dr Francisco Suárez-Ruiz and alumnus Mr Zhou Xian believe that their robot could be of greatest value in performing specific tasks with precision in industries where tasks are varied and do not merit specialised machines or assembly lines.

How it works

The robot is designed to mimic the genericity of the human “hardware” used to assemble objects: the “eyes” through a 3D camera and the “arms” through industrial robotic arms that are capable of six-axis motion.

Each arm is equipped with parallel grippers to pick up objects. Mounted on the wrists are force sensors that determine how strongly the “fingers” are gripping and how powerfully they push objects into contact with each other.

The robot starts the assembly process by taking 3D photos of the parts laid out on the floor to generate a map of the estimated positions of the different parts.

This is to replicate, as much as possible, the cluttered environment after humans unbox and prepare to put together a build-it-yourself chair.

The challenge here is to determine a sufficiently precise localisation in a cluttered environment quickly and reliably.

Next, using algorithms developed by the team, the robot plans a two-handed motion that is fast and collision-free. This motion pathway needs to be integrated with visual and tactile perception, grasping and execution.

To make sure that the robotic arms are able to grip the pieces tightly and perform tasks such as inserting wooden plugs, the amount of force exerted has to be regulated.

This is challenging because industrial robots, designed to be precise at positioning, are bad at regulating forces, Asst Prof Pham explains.

The force sensors mounted on the wrists help to determine the amount of force required, allowing the robot to precisely and consistently detect holes by sliding the wooden plug on the surfaces of the work pieces, and perform tight insertions.

Successful autonomous dexterous manipulation

The robot developed by the NTU Singapore scientists is being used to explore dexterous manipulation, an area of robotics that requires precise control of forces and motions with fingers or specialised robotic hands. As a result, the robot is more human-like in its manipulation of objects.

So far, autonomous demonstration of dexterous manipulation has been limited to elementary tasks, said Asst Prof Pham.

Prof Pham says: “One reason could be that complex manipulation tasks in human environments require many different skills.

“This includes being able to map the exact locations of the items, plan a collision-free motion path, and control the amount of force required.

“On top of these skills, you have to be able to manage their complex interactions between the robot and the environment.

“The way we have built our robot, from the parallel grippers to the force sensors on the wrists, all work towards manipulating objects in a way humans would.”

Now that the team has achieved its goal of demonstrating the assembly of an IKEA chair, they are working with companies to apply this form of robotic manipulation to a range of industries.

The team is now working to deploy the robot to do glass bonding that could be useful in the automotive industry, and drilling holes in metal components for the aircraft manufacturing industry.

Cost is not expected to be an issue as all the components in the robotic setup can be bought off the shelf.

The research which took three years was supported by grants from the Ministry of Education, NTU’s innovation and enterprise arm NTUitive, and the Singapore-MIT Alliance for Research & Technology.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: News Tagged With: ikea furniture assembly, nanyang technological university, singapore

Primary Sidebar

Search this website

Latest articles

  • Spike Dynamics open-sources micro linear piezo actuators that enable ‘muscle-like movement’
  • Mendaera undertakes first surgical procedures with Focalist handheld robotic system
  • Gessmann presents new cobot welding cell at Blechexpo 2025
  • ETH Zurich researchers develop biohybrid system that mimics bone-muscle interface
  • Novarc Technologies launches fully autonomous high-precision tungsten inert gas welding system
  • A3 releases new American national standard for industrial robot safety
  • Honeywell introduces all-in-one battery energy storage automation platform
  • Qatar Airways and Cainiao expand strategic partnership to power global e-commerce
  • Formula 1 racing organizer selects Siemens as official digital twin sponsor
  • Logic unveils ‘Octopus’ overhead robot for warehouse operations

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT