• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
uc san diego fetch soft gripper

Robotic gripper soft enough to change light bulbs without breaking them

October 17, 2017 by Sam Francis

How many robots does it take to screw in a light bulb?

The answer: just one, assuming you’re talking about a new robotic gripper developed by engineers at the University of California San Diego.

The engineering team has designed and built a gripper that can pick up and manipulate objects without needing to see them and needing to be trained. 

The team says the gripper (video below) is unique because it brings together three different capabilities.

It can twist objects; it can sense objects; and it can build models of the objects it’s manipulating.

 

This allows the gripper to operate in low light and low visibility conditions, for example.

The engineering team, led by Michael Tolley, a roboticist at the Jacobs School of Engineering at UC San Diego, presented the gripper at the International Conference on Intelligent Robots and Systems September 24 to 28 in Vancouver, Canada.

Researchers tested the gripper on an industrial Fetch Robotics robot and demonstrated that it could pick up, manipulate and model a wide range of objects, from lightbulbs to screwdrivers.

“We designed the device to mimic what happens when you reach into your pocket and feel for your keys,” says Tolley.

The gripper has three fingers. Each finger is made of three soft flexible pneumatic chambers, which move when air pressure is applied.

This gives the gripper more than one degree of freedom, so it can actually manipulate the objects it’s holding.

For example, the gripper can turn screwdrivers, screw in lightbulbs and even hold pieces of paper, thanks to this design.

In addition, each finger is covered with a smart, sensing skin. The skin is made of silicone rubber, where sensors made of conducting carbon nanotubes are embedded.

The sheets of rubber are then rolled up, sealed and slipped onto the flexible fingers to cover them like skin.

The conductivity of the nanotubes changes as the fingers flex, which allows the sensing skin to record and detect when the fingers are moving and coming into contact with an object.

The data the sensors generate are transmitted to a control board, which puts the information together to create a 3D model of the object the gripper is manipulating.

It’s a process similar to a CT scan, where 2D image slices add up to a 3D picture, say the researchers.

The breakthroughs were possible because of the team’s diverse expertise and their experience in the fields of soft robotics and manufacturing, Tolley said.

Next steps include adding machine learning and artificial intelligence to data processing so that the gripper will actually be able to identify the objects it’s manipulating, rather than just model them.

Researchers also are investigating using 3D printing for the gripper’s fingers to make them more durable.

This work was supported by the Office of Naval Research, the UC San Diego Frontiers of Innovation Scholars Program, and the National Science Foundation Graduate Research Fellowship.

The study, A Soft Robotics Gripper Capable of In-Hand Manipulation Augmented with Soft Sensor Skin for Tactile Sensing, involved the following researchers:

  • Benjamin Shih
  • Dylan Drotman
  • Caleb Christianson
  • Ruffin White
  • Zhaoyuan Huo
  • Henrik Christensen; and
  • Michael Tolley, University of California San Diego

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: News Tagged With: fetch robotics, robotic gripper, soft robotics, University of California San Diego

Primary Sidebar

Search this website

Latest articles

  • Robotics Rising: What Hiring Trends Reveal About Automation Careers
  • Xpanner launches ‘first’ scalable physical AI-based automation solution for construction sites
  • Skelex starts exoskeleton pilot in greenhouses in the Netherlands
  • Humanoid Global makes ‘software investment’ in RideScan
  • $50 million funding sparks ‘manufacturing technology breakthroughs‘ in Ontario
  • Wachendorff expands range of IO-Link encoders
  • Robotics survey highlights autonomy, digital twins, humanoids and ethics as key 2025 trends
  • ABB to implement gearless mill drive service program at Codelco copper mines in Chile
  • Systraplan unveils new automatic tread booking systems for tyre manufacturing
  • QCraft sets up European headquarters and partners with Qualcomm

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT