• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
Chris Wagner, head of advanced surgical systems at Cambridge Consultants, with the Axsis robotic surgery technology

Doctor, I shrunk the robot. Or… Out of their tiny little robotic minds

April 29, 2017 by Sam Francis

By Chris Wagner, head of advanced surgical systems at Cambridge Consultants

Surgical robots today are large and unwieldy. This causes a number of challenges in the operating theatre. 

Setting up and managing the robots, for example, takes up valuable operating time. It’s also difficult to swap a robot in and out of a surgical procedure if traditional tools are more appropriate for some elements of an operation. And there are safety issues when clinical staff work in close proximity to a large piece of moving equipment.

So a surgeon has to weigh the benefits of surgical robotics against these limitations for each procedure where a robot is used.

There is an opportunity here – if we can simply make the robot smaller, many of these limitations disappear. It is much easier to move a small robot into an operating theatre, put it into position for an operation and move it out again afterwards. The safety concerns are also much reduced. 

The trick is how to reduce size without sacrificing performance. We believe it’s possible – but it means optimising the system as a whole.

One of the design choices that have led to the large size of current systems is the use of a rigid, straight surgical instrument to access the inside of the body. The difficulty with this straight-stick approach is that the actuators (motors) need to resist ‘body wall’ forces during manipulation – making the actuators large, relative to the actual force you need to apply at the end effector.

Also, during an operation, the robot arms often need to be moved around in relation to their entry points into the body. Current systems enable that reorientation using motorised joints – making the base actuators and the entire system even larger.

Finally, because the body wall is thick, enforcing a single pivot point about which the instruments rotate requires a large offset between the attachment point of the robot and the straight instrument, leading to large robot motion outside the body for angle motion inside the body.

All of these choices lead to big robots. But by breaking the basic assumption of a rigid, straight instrument, we see a potential solution.

If an articulating flexible instrument is used instead, it can move inside the body without any corresponding motion of the robot outside the body. Further, the actuators driving the articulation do not need to resist body wall forces when moving, and can therefore be smaller.

Finally, parallel mechanisms can be used to couple the actuators to the end effector motion – removing the need for one actuator to carry the weight of another and, again, making the actuators smaller.

We’ve demonstrated a realisation of this design in surgical robot technology that is small enough to carry out movement inside an eye. Not only is the robot small on the inside, the external system is small as well – using the design principles above, the external robot is no larger than a drinks can, with no large motions of the robot when controlling the tip.

Our hope is that similar improvements can be incorporated into the next generation of surgical robots, providing increased clinical benefit without trade-offs for the surgeon.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Sections A-Z Tagged With: design, instrument, operating, operation, robot, robots, surgical

Primary Sidebar

Search this website

Latest articles

  • Construction and demolition robots: Building the future
  • Robotics Rising: What Hiring Trends Reveal About Automation Careers
  • Xpanner launches ‘first’ scalable physical AI-based automation solution for construction sites
  • Skelex starts exoskeleton pilot in greenhouses in the Netherlands
  • Humanoid Global makes ‘software investment’ in RideScan
  • $50 million funding sparks ‘manufacturing technology breakthroughs‘ in Ontario
  • Wachendorff expands range of IO-Link encoders
  • Robotics survey highlights autonomy, digital twins, humanoids and ethics as key 2025 trends
  • ABB to implement gearless mill drive service program at Codelco copper mines in Chile
  • Systraplan unveils new automatic tread booking systems for tyre manufacturing

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT