• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
gene

Genetic ‘switch’ in animals offers clues to evolutionary origins of fine motor skills

February 23, 2017 by Sophiya

gene

Switch drives supply of nerve cells to hands and feet – findings highlight complexity and diversity of cells in the central nervous system that are required for movement

Researchers have identified a genetic signature found exclusively in the nerve cells that supply, or innervate, the muscles of an organism’s outermost extremities: the hands and feet.

This signature, observed in both mice and chicks, involves the coordinated activity of multiple genes, and is fundamentally distinct from cells innervating nearby anatomical regions, such as more proximal muscles in the limb.

The findings suggest that the evolution of the extremities may be related to the emergence of fine motor control, such as grasping – one of biology’s most essential adaptations.

The study, led by neuroscientists at Columbia University’s Mortimer Zuckerman Mind Brain Behavior Institute and New York University, was published today in the journal Neuron.

“The emergence of hands, feet and digits – about 400 million years ago – represented a turning point in evolution; it helped the first land animals perform a variety of fine motor skills, like grasping, which eventually gave rise to the complex motor abilities that we humans use every day – from typing on a keyboard to painting a work of art,” said Thomas Jessell, PhD, the paper’s senior author and codirector of Columbia’s Zuckerman Institute.

“But while fine motor control has proven critical for survival for hundreds of millions of years, little was known about how the nerve cells that extend to the tips of our fingers and toes make these skills possible.”

For this study, the researchers focused on motor neurons, the class of nerve cells that guide movement. Motor neurons achieve this by innervating specific muscles, and then relaying signals from the brain about how those muscles should move. The motor neurons that guide movement of the digits are called digit-innervating motor neurons.

“When we began this research, we were simply looking to compare key molecular features – namely gene activity – in motor neurons that supply different muscles in the leg,” said Alana Mendelsohn, an MD/PhD candidate at Columbia and the paper’s first author.

“Instead, it soon became clear that the pattern of gene activity in the digit-innervating motor neurons in the foot was strikingly different compared to activity of motor neurons that innervate the more proximal muscles of the limb.”

Specifically, Mendelsohn observed that the motor neurons that supply both the hands and the feet did not produce a molecule called retinoic acid.

“One of the hallmark features of motor neurons is that they require retinoic acid for their growth and development,” said Mendelsohn. “But for some reason digit-innervating motor neurons weren’t producing it.”

In fact, experiments revealed that, in these neurons, retinoic acid was detrimental. When the team artificially induced retinoic-acid activity in digit-innervating motor neurons of mouse and chick embryos, it halted the development of digit-innervating motor neurons.

Mendelsohn and Dr Jessell hypothesized that other factors were blocking the production of retinoic acid, and that its absence ensured, at least in some part, healthy digit-innervating motor neuron development.

To investigate, the Columbia researchers teamed up with Jeremy Dasen, PhD, a former post-doctoral fellow with Dr Jessell and now professor of neuroscience at the NYU Neuroscience Institute and an expert in the development and evolution of motor circuits.

Together, the authors hypothesized that the key may lie in Hox genes, a family of genes that drive the growth and development of, among other things, the nervous system.

In a series of experiments in chick and mouse embryos at various stages of development, the researchers identified two such members of Hox gene family, known as Hoxc8 and Hoxc9, that are both required for the development of motor neurons that supply the hand.

Surprisingly, although high levels of Hoxc9 is detrimental to limb-innervating motor neurons, digit-innervating motor neurons are unique in that they actually require Hoxc9 – albeit at low levels.

“The low levels of Hoxc9 appeared to be particularly important,” said Dr Jessell, who is also the Claire Tow Professor of Motor Neuron Disorders in the departments of neuroscience and biochemistry and molecular biophysics at Columbia University Medical Center.

“Hoxc9 activity was high enough to prevent the production of retinoic acid (which would have been harmful) but low enough to still allow for the production of other proteins that we think are also necessary for the complete formation of digit-innervating motor neurons.”

Moving forward, the researchers hope to further characterize the suite of genes and proteins that are involved in digit-innervating motor neuron development, while also expanding their scope to more deeply investigate how the nervous system adapted to the emergence of digits in evolutionary history.

“This study represents a significant advance in our understanding of the genetic programs underlying the ability to perform fine motor tasks,” said Dr Dasen. “The molecular markers revealed in this work could provide an entry point for unraveling the evolution of the neural circuitry essential for sophisticated limb-based behaviors.”

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: News Tagged With: digit-innervating, motor, neurons

Primary Sidebar

Search this website

Latest articles

  • Logic unveils ‘Octopus’ overhead robot for warehouse operations
  • Zoox launches public robotaxi service in Las Vegas
  • Roush delivers first Kodiak Driver-equipped autonomous truck
  • Exotec and E80 Group agree strategic partnership
  • Toray and T2 launch autonomous truck trial for petrochemical transport
  • Serve Robotics adds Voysys teleoperation technology to its delivery robots
  • LAPP ‘cuts labor and boosts accuracy’ with autonomous drone inventory solution
  • Nexcom to launch ‘safety-centric humanoid robot controller’
  • Trio launches Motion-PLC controllers to ‘simplify stand-alone machine design’
  • Matthews Automation expands investment in Freespace Robotics with warehouse solution purchase

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT