• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to secondary sidebar
  • About
    • Contact
    • Privacy
    • Terms of use
  • Advertise
    • Advertising
    • Case studies
    • Design
    • Email marketing
    • Features list
    • Lead generation
    • Magazine
    • Press releases
    • Publishing
    • Sponsor an article
    • Webcasting
    • Webinars
    • White papers
    • Writing
  • Subscribe to Newsletter

Robotics & Automation News

Where Innovation Meets Imagination

  • Home
  • News
  • Features
  • Editorial Sections A-Z
    • Agriculture
    • Aircraft
    • Artificial Intelligence
    • Automation
    • Autonomous Vehicles
    • Business
    • Computing
    • Construction
    • Culture
    • Design
    • Drones
    • Economy
    • Energy
    • Engineering
    • Environment
    • Health
    • Humanoids
    • Industrial robots
    • Industry
    • Infrastructure
    • Investments
    • Logistics
    • Manufacturing
    • Marine
    • Material handling
    • Materials
    • Mining
    • Promoted
    • Research
    • Robotics
    • Science
    • Sensors
    • Service robots
    • Software
    • Space
    • Technology
    • Transportation
    • Warehouse robots
    • Wearables
  • Press releases
  • Events
microbes

Researchers discover ‘marvel microbes’ explaining how cells became complex

January 25, 2017 by Sophiya

microbes

Article from Uppsala University website

In a new study, published in Nature this week, an international research group led from Uppsala University in Sweden presents the discovery of a group of microbes that provide new insights as to how complex cellular life emerged.

The study provides new details of how, billions of years ago, complex cell types that comprise plants, fungi, but also animals and humans, gradually evolved from simpler microbial ancestors.

Life on our planet can be divided into three major groups. Two of these groups are represented by tiny microbes, the Bacteria and the Archaea. The third group of organisms comprises all visible life, such as humans, animals, and fungi – collectively known as eukaryotes.

Whereas the cells of bacteria and archaea are generally small and simple, eukaryotes are made up of large and complex cell types.

The origin of these complex cell types has long been a mystery to the scientific community, but now an international collective of researchers led by Uppsala University has identified a group of microorganisms that provides a unique insight into the evolutionary transition from simple to complex cells.

Based on pioneering work from the acclaimed biologist Carl Woese, it has been known that eukaryotes at some point shared a common ancestor with archaea. It was also clear that symbiosis – a process involving an intimate collaboration between two cell types – played an important role in this process.

Most scientists share the view that a symbiosis in which an archaeal host cell took up a bacterium ultimately gave rise to eukaryotes. Yet, whether this symbiosis was the cause or rather the consequence of the evolution of complex cells remained an open question.

In this weeks’ edition of Nature, researchers from Uppsala University in Sweden, along with collaborators from the USA, Japan, Denmark and New Zealand report the discovery of a new group of Archaea, the Asgard archaea, which reveal important details on how eukaryotic cells evolved their complexity.

“The evolution of complex cell types has been a long and complicated process that is poorly understood. By using new methods to obtain genome data from microbes that cannot be grown in the laboratory, we identified a new archaeal group that is related to the host cell from which eukaryotic cells evolved. These are very exciting times,” says Thijs Ettema at the Department of Cell and Molecular Biology, Uppsala University, who lead the scientific team that carried out the study.

In 2015, Thijs Ettema and colleagues published a breakthrough study in which genomic data was described of ‘Loki’, an archaeon living in the ocean floor that represented the closest living micro-organism of complex cellular life. In the current study, which corroborates these previous findings, several new Loki-related archaea are described.

“These organisms are our closest microbial relatives, and we know next to nothing about them. Current methods allow us to take a first genetic sneak peek. It is really exciting,” says Thijs Ettema.

“Our findings are based on analysis of genetic material that was directly obtained from the environment. We have actually never seen these cells,” says Jimmy Saw, researcher at the Department of Cell and Molecular Biology, Uppsala University, and co-lead author of the paper.

“We named these new archaea Thor, Odin and Heimdall after the Norse gods, and together with Loki, they form the Asgard archaea. Interestingly, these new groups are found in various environments all over the world, and not only in the deep sea, as Loki. So far they are most abundant in sediments,” says Eva Fernandez-Caceres, co-lead author from Uppsala University.

The study provides strong evidence that eukaryotes evolved from a lineage that was related to these Asgard archaea.

“Asgard archaea form a well-supported group with the eukaryotes in the tree of life. This indicates that they share a common ancestry,” says Kasia Zaremba-Niedzwiedzka, another co-lead author involved in the study from Uppsala University. “This part of the study was rather complicated, and we would clearly benefit from having more data. This is not the end of the story, rather the opposite.”

But the main surprise was found when Asgard genomes were analyzed in more detail.

“We found that Asgard archaea share many genes uniquely with eukaryotes, including several genes that are involved in the formation of structures that give eukaryotic cells their complex character. Such genes had thus far only been found in eukaryotes, indicating that these archaea were somehow primed to become complex. However, the picture is far from being clear on exactly how this could have happened,” says Anja Spang, researcher at the Department of Cell and Molecular Biology, Uppsala University.

Studying Asgard archaea in more detail represents a prioritized goal for Thijs Ettema and his research group. The present study shows that these archaea can be found in many more environments, and not just in the ocean floor as thought before. This makes this goal much more tractable.

“It would be great if we could isolate or grow Asgard cells, and study them under the microscope. I am convinced that this will reveal more important clues about how complex cells evolved. Ultimately our microbial ancestry will be uncovered,” concludes Thijs Ettema.

Print Friendly, PDF & Email

Share this:

  • Click to print (Opens in new window) Print
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on LinkedIn (Opens in new window) LinkedIn
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on X (Opens in new window) X
  • Click to share on Tumblr (Opens in new window) Tumblr
  • Click to share on Pinterest (Opens in new window) Pinterest
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Telegram (Opens in new window) Telegram
  • Click to share on Pocket (Opens in new window) Pocket

Related stories you might also like…

Filed Under: Sections A-Z Tagged With: cell, cells, evolved, microbes

Primary Sidebar

Search this website

Latest articles

  • Fugro and NOAA partner to advance remote deep-ocean mapping
  • Meiko Group partners with Fizyr and Yaskawa Europe on automated dishwashing
  • The Precision Engineering Foundations of Next-Generation Robotics
  • ABB to invest an extra $110 million in US manufacturing
  • GlaxoSmithKline to invest $30 billion in R&D and manufacturing in the US
  • Eli Lilly to build $5 billion manufacturing facility in Virginia
  • Sonair raises $6 million to accelerate launch of ‘world’s first safe 3D ultrasonic sensor for robots’
  • ASG Power advances sustainability and efficiency through new training initiative
  • GMI and AINEXXO form strategic alliance to launch ‘self-aware and self-protecting factory’
  • SoftBank develops ‘robot-friendly’ server rack to enable automation at data centers

Secondary Sidebar

Copyright © 2025 · News Pro on Genesis Framework · WordPress · Log in

We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Do not sell my personal information.
Cookie SettingsAccept
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT